RSA World 2017

I was struck by the large number of vendors offering visibility as a key selling point. Into various types of network traffic. Network monitors, industrial network gateways, SSL inspection, traffic in VM farms, between containers, and on mobile.

More expected are the vendors offering reduced visibility – via encryption, TPMs, Secure Enclaves, mobile remote desktop, one way links, encrypted storage in the cloud etc. The variety of these solutions is also remarkable.

Neil Degrasse’s closing talk was so different yet strangely related to these topics, the universe slowly making itself visible to us through light from distant places, with insights from physicists and mathematics building up to the experiments that recently confirmed gravitational waves – making the invisible, visible. . This tenuous connection between security and physics left me misty eyed. What an amazing time to be living in.

Advertisements

Industrial Robot Safety Systems

Robot safety systems must be concerned with graceful degradation in the face of component failures, bad inputs and extreme operating conditions. With the increasing complexity and prevelance of robots, one can expect these requirements to grow.

This document “Robot System Safety” describes the following safety features of Kuka robots-
— Restricted envelope
— EMERGENCY STOP
— Enabling switches
— Guard interlock

An interlock system described here for general control systems, is a mechanism for guaranteeing that an undesired combination of states does not occur – for e.g. robot moving when the cell door is open, or an elevator moving when the door is open. The combination of the controlled stop with the guard interlock is described as follows:

“The robot controller features a two–channel safety input, to which the guard interlock can be connected. In the automatic modes, the opening of the guard connected to this input causes a controlled stop, with power to the drives being maintained in order to ensure this controlled stop. The power is only disconnected once the robot has come to a standstill. Motion in Automatic mode is prevented until the guard connected to this input is closed. This input has no effect in Test mode. The guard must be designed in such a way that it is only possible to acknowledge the stop from outside the safeguarded space.”

This Standford Linear Accelerator (SLAC) paper describes the advantages of PLCs for interlock design as:

. flexible system configuration due to modular hardware and software
. regularly scheduled background tests of PLC system and sensitive I/O
. comprehensive system self-tests
. intelligent fault diagnostics simplify trouble-shooting
. easy reconfiguration of the interlock logic
. no mechanical wear and tear
. improved security due to logic encapsulation in firmware

The SLAC use case is to lock the doors unless (a) the power has been shutoff or (b) the power is on but there is an explicit bypass for hot maintenance. They implement it on a Siemens PLC using statement lists (vs ladder logic or control system flowchart programming).
GE has a number of industrial interlocks for various safety functions – http://www.clrwtr.com/PDF/GE-Security/Sentrol-Catalog.pdf

A very useful article on interlocking devices – http://machinerysafety101.com/2012/06/01/interlocking-devices-the-good-the-bad-and-the-ugly/

Awesome IOT hacks repost

Mirroring from https://github.com/nebgnahz/awesome-iot-hackss for easy access.

A curated list of hacks in IoT space so that researchers and industrial products can address the security vulnerabilities (hopefully).

Thingbots

RFID

Home Automation

Connected Doorbell

Hub

Smart Coffee

Wearable

Smart Plug

Cameras

Traffic Lights

Automobiles

Airplanes

Light Bulbs

Locks

Smart Scale

Smart Meters

Pacemaker

Thermostats

Fridge

Media Player & TV

Toilet

Toys

Software Defined Networking Security

Software Defined Networking seeks to centralize control of a large network. The abstractions around computer networking evolved from the connecting nodes via switches, to applications that run on top with the OSI model, to the controllers that manage the network. The controller abstraction were relatively weak – this had been the domain of telcos and ISPs, and as the networks of software intensive companies like Google approached the size of telco networks, they moved to reinvent the controller stack.  Traffic engineering and security which were done in disparate regions were attempted to be centralized in order to better achieve economies of scale. Google adopted openflow for this, developed by Nicira, which was soon after acquired by VMWare; Cisco internal discussions concluded that such a centralization wave would reduce Cisco revenues in half, so they spun out Insieme networks for SDN capabilities and quickly acquired it back. This has morphed into the APIC offering.

The centralization wave is a bit at odds with the security and resilience of networks because of their inherent distributed and heterogenous nature. Distributed systems provide availability, part of the security CIA triad, and for many systems availability trumps security. The centralized controllers would become attractive targets for compromise. This is despite the intention of SDN, as envisioned by Nicira founder M. Casado, to have security as its cornerstone as described here. Casado’s problem statement is interesting: “We don’t have a ubiquitous and horizontal security layer that provides both context and isolation. Where do we normally put security controls? We put it in one of two places. We might put it in the physical infrastructure, which is great because you have isolation. If I have ACLs [access control lists] or a firewall or an IDS [intrusion detection system], I put it in a separate box and I put it away from the applications so that the attack surface is pretty small and it’s totally isolated… you have isolation, but you have no context. ..  Another place we put security is in the end host, an application or operating system. This suffers from the opposite problem. You have all the context that you need — applications, users, the data being accessed — but you have absolutely no isolation.” The centralization imperative comes from the need to isolate and minimize the trusted computing base.

In the short term, there may be some advantage to be gained by complexity reduction through centralized administration, but the recommendation of dumb switches that respond to a tightly controlled central brain, go against the tenets of compartmentalization of risk and if such networks are put into practice widely they can result in failures that are catastrophic instead of isolated.

What the goal should be is a distributed system which is also responsive.

Lessons from SF Muni Ransomware

On Nov 25, a hacker going by “andy saolis” infected the San Francisco Municipal Transportation Agency’s (SMFTA) network with ransomware that encrypted data on 900 office computers, spreading through the system’s Windows operating system. Saolis threatened to publish 30 gigabytes of data, including contracts, employee data, customer information.  SMFTA’s ticketing system was shut down to prevent the malware from spreading. The attacker demanded a 100 Bitcoin ransom, around $73,000, to unlock the affected files. Salted hash reported the malware is likely a variant of HDDCryptor, which uses commercial tools to encrypt hard drives and network shares.

The service was restored due to backups . However consider these systems were in an ICS scenario. An unexpected downtime would result, which would be unacceptable.

Containers and Privileges

Cgroups limit how much you can do. Namespaces limit how much you can see.

Linux containers are based on cgroups and namespaces and can be privileged or unprivileged. A privileged container is one without the “User Namespace” implying it has direct visibility into all users of the underlying host. The User Namespace allows remapping the user identities in the container so even if the process thinks it is running as root, it is not.

Using cgroups to limit fork bombs from Jessie’s talk:

$ sudo su
# echo 2 > /sys/fs/cgroup/pids/parent/pids.max
# echo $$ > /sys/fs/cgroup/pids/parent/cgroups.procs  // put current pid
# cat /sys/fs/cgroup/pids/parent/pids.current
2
# (echo "foobar" | cat )
bash: for retry: No child processes

Link to the 122 page paper on linux containers security here.  Includes this quote on linux kernel attacks.

“Kernel vulnerabilities can take various forms, from information leaks and Denial of Service (DoS) risks to privilege escalation and arbitrary code execution. Of the roughly 400 Linux system calls, a number have contained privilege escalation vulnerabilities, as recently as of 2016 with keyctl(2). Over the years this included, but is not limited to: futex(2), vmsplice(2), mremap(2), unmap(2), do_brk(2), splice(2), and modify_ldt(2). In addition to system calls, old or obscure networking code including but not limited
to SCTP, IPX, ATM, AppleTalk, X.25, DECNet, CANBUS, Econet and NETLINK has contributed to a great number of privilege escalation vulnerabilities through various use cases or socket options. Finally, the “perf” subsystem, used for performance monitoring, has historically contained a number of issues, such as perf_swevent_init (CVE-2013-2094).”

Which makes the case for seccomp, as containers both privileged and unprivileged can lead to bad things –

““Containers will always (by design) share the same kernel as the host. Therefore, any vulnerabilities in the kernel interface, unless the container is forbidden the use of that interface (i.e. using seccomp)”- LXC Security Documentation by Serge Hallyn, Canonical”

The paper has several links on restricting access, including grsecurity, SELinux, App Armor and firejail. A brief comparison of the first three is here. SELinux has a powerful access control mechanism – it attaches labels to all files, processes and objects; however it is complex and often people end up making things too permissive, instead of taking advantage of available controls.  AppArmor works by labeling  files by pathname and applying policies to the pathname – it is recommended with SUSE/OpenSUSE, not CentOS.  Grsecurity policies are described here, its ACLs support process–based resource restrictions, including memory/cpu/files open, etc.